Three-Dimensional Simulations of Compressible Turbulence on Leading-Edge Parallel Platforms

A.A. Mirin, R.H. Cohen, W.P. Dannevik, A.M. Dimits, R.G. Eastman, D.E. Eliason. B. McNamara, O. Schilling Lawrence Livermore National Laboratory

S.A. OrszagCambridge Hydrodynamics, Inc.

D.H. Porter, P.R. Woodward
University of Minnesota

November 1997

Abstract

A parallelized, three-dimensional hydrodynamics code based on the Piecewise Parabolic Method is used to examine compressible fluid turbulence in three dimensions. We consider both Direct Numerical Simulation and Large Eddy Simulation; in the latter case the idea is to run at coarser resolution through Subgrid-Scale parameterization. Applications include Rayleigh-Taylor and Richtmyer-Meshkov instability and turbulent mixing, and interactions of a shock with pre-existing turbulence. The code has recently been coupled with a radiation diffusion package, which uses an implicit solution technique in three dimensions. Issues of current relevance include parallel efficiency of the 3-D implicit solver, parallel I/O, and postprocessing and storage of large data sets. We present performance results on leading-edge platforms, including those supported under the DOE Accelerated Strategic Computing Initiative (ASCI).

Direct Numerical Simulation vs Large Eddy Simulation

- Direct Numerical Simulation (DNS)
 - —solve PDEs over all relevant length scales
 - —high resolution grid required
- Large Eddy Simulation (LES)
 - represent medium to large scales on the computational grid
 - —use closure theory to model effects of small scales
 - —not as much gridpoints required as with DNS

Piecewise Parabolic Method (PPM) Code

- Higher-order Godunov method (Colella and Woodward) designed for flows with shocks
- Optional Navier-Stokes terms
- Lagrangian with Eulerian remap
- Directional splitting
- FORTRAN
- 3-D logically rectangular domain decomposition with message-passing
- Communications decomposed into 1-D shifts
- Over 2700 operations per gridpoint per timestep
- 7-Row border (redundant computation to save on communications)

Data Assimilation

- Restart dumps, compressed dumps (2-byte or 1-byte integer)
- Each node produces its own data file
- Data analyzed with PPM tool kit from the University of Minnesota
 - —a3d program computes vorticity, power spectra, etc. from individual nodal files
 - —a3d can convert to either ascii or bricks-of-bytes (BOB) format
 - Various visualization tools (e.g., PERPATH, BOB) can view BOB format

Comparing Machine Performance

- Common norm of throughput per node/processor must be taken in context
 - —processor power
 - —processor cost
- ASCI machines are evolving rapidly

Intermachine Comparison

Machine	µs / ∆t / point	Mflop / node	
LLNL IBM-SP	3.3	25.7	32-bit
LLNL Cray-T3D	6.4	13.2	64-bit
Sandia Intel Paragon	21.9	3.9	
Sandia Intel ASCI-Red	3.1	27.7	
Sandia Intel ASCI-Red	2.4	35.3	
Dec Alpha (NE)-1 proc.	23.8	114.0	
(Estimate for 32 processors)	(1.1)	(78.8)	

Triply periodic decay problem

128-cubed grid

4 x 4 x 2 domain decomposition (32 processors)

Parallel Efficiency on IBM-SP System

No. of nodes	Decomposition	Local mesh	μs / t / meshpoint
8	2 x 2 x 2	64 x 64 x 64	10.5
32	4 x 4 x 2	32 x 32 x 64	3.3
128	4 x 4 x 8	32 x 32 x 16	1.2

 Drop in parallel efficiency due almost entirely to redundant border computations

Parallel Efficiency on ASCI-Red System

No. of nodes	Decomposition	Local mesh	μs / t / meshpoint
8	2 x 2 x 2	64 x 64 x 64	9.1
32	4 x 4 x 2	32 x 32 x 64	2.4
128	4 x 4 x 8	32 x 32 x 16	0.9

 Drop in parallel efficiency due almost entirely to redundant border computations

Scaling with Increasing Problem Size on Intel Paragon

No. of Nodes	Global mesh	Decomp.	Local mesh	μs / t / local-point
8	64 x 64 x 64	2 x 2 x 2	32 x 32 x 32	89.3
512	256 x 256 x 256	8 x 8 x 8	32 x 32 x 32	91.6

Scaling is almost perfect

Coupling of Radiation Diffusion Packagewith PPM

- One-group or multigroup flux limited diffusion
- Two-temperature (gas + radiation)
- One equation of state (to be generalized shortly)
- PPM module advects radiation energy-density
- Radiation module addresses effects of radiative absorption and emission
- Radiative acceleration treated as forward-in-time body force
- Spatial differencing of flux divergence leads to 7-point stencil; resulting linear system solved by GMRES with preconditioning, using AZTEC sparse parallel solver

Scaling of AZTEC Solver with Increasing Problem Size on IBM ASCI Blue-Pacific

No. of Nodes	Global mesh	Decomp.	Local mesh	Mflops/ node
1	32 x 32 x 32	1 x 1 x 1	32 x 32 x 32	21.6
8	64 x 64 x 64	2 x 2 x 2	32 x 32 x 32	20.5
64	128 x 128 x 128	4 x 4 x 4	32 x 32 x 32	18.3

High-Resolution Computation on IBM-SP ASCI Blue-Pacific ID System

- 512 x 512 x 512 global mesh
- 128 nodes (4 x 4 x 8 domain decomposition)
- 100 timesteps takes 3 hours
- Restart dump (78 MB / node) takes 7 minutes writing directly to PIOFS file system
- Compressed data dump (13 MB / node) takes 5 minutes

High-Resolution Computation on Intel Tflops ASCI Red System

- 512 x 512 x 512 global mesh
- 512 nodes (8 x 8 x 8 domain decomposition)
- 100 timesteps takes 40 minutes
- Restart dump (24 MB / node) takes 12 minutes writing directly to PFS file system
- Compressed data dump (3 MB / node) takes 13 minutes (this involves several hundred separate writes; PFS exhibits very high latency; I/O must be buffered).

Rayleigh-Taylor Instability

- Light fluid trying to support heavy fluid
 - —air supporting water
 - —astrophysics
 - inertial confinement fusion
- Perturbations at fluid interface grow
- Mixing layer develops
 - heavier fluid forms spikes as it drops into a lighter fluid
 - lighter fluid forms bubbles as it rises into a heavier fluid

Rayleigh-Taylor Simulation on the ASCI Blue Pacific ID System

- Three-dimensional, compressible Navier-Stokes
- Piecewise Parabolic Method (PPM)
- 512 × 512 × 512 resolution
- Ideal gas, = 5/3
- Atwood number = 1 / 3
- Prandtl number (/) = 1
- Viscosity ($/ c_s L_z$) = 4 × 10⁵

Richtmyer-Meshkov Instability

- Impulsive-acceleration limit of Rayleigh-Taylor instability
 - shock crosses interface of two fluids of differing density
- Perturbations at fluid interface grow
- Mixing layer with bubbles and spikes develops

Richtmyer-Meshkov Simulation on the ASCI Blue Pacific ID System

- Box size: 0.5 x 0.5 x 1.37
- 192 x 192 x 448 mesh (expanding in z at box ends)
- Contact discontinuity with 2-fold density contrast is hit by Mach-6 shock (on low density side)
- Single mode initial perturbation
- Prandtl number = 1.0, viscosity = 4×10^{-5}
- Passive scalar monitors mix

Richtmyer-Meshkov Simulation, cont.

- Second Mach-6 shock launched either from same side or from opposite side
- Smearing of fine-scale structure
- Fluid compresses; mixed layer width then increases significantly
- When shock is from opposite side, there is inversion followed by similar behavior

Toward the Future

- PPM is effective tool for simulating 3-D compressible turbulence
- High resolution (up to billions of zones) will be needed to develop and validate SGS closures
- We will investigate modification of programming model to accommodate distributed-shared-memory (DSM) architectures
- Robust I/O and post processing environment needed for data assimilation
- We will need a lot of computer time (and disk)

Work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48